3.1.34 \(\int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx\) [34]

Optimal. Leaf size=90 \[ \frac {\left (3 a^2-4 a b+8 b^2\right ) \tanh ^{-1}(\sin (x))}{8 a^3}-\frac {b^{5/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sin (x)}{\sqrt {a+b}}\right )}{a^3 \sqrt {a+b}}+\frac {(3 a-4 b) \sec (x) \tan (x)}{8 a^2}+\frac {\sec ^3(x) \tan (x)}{4 a} \]

[Out]

1/8*(3*a^2-4*a*b+8*b^2)*arctanh(sin(x))/a^3-b^(5/2)*arctanh(sin(x)*b^(1/2)/(a+b)^(1/2))/a^3/(a+b)^(1/2)+1/8*(3
*a-4*b)*sec(x)*tan(x)/a^2+1/4*sec(x)^3*tan(x)/a

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3265, 425, 541, 536, 212, 214} \begin {gather*} -\frac {b^{5/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sin (x)}{\sqrt {a+b}}\right )}{a^3 \sqrt {a+b}}+\frac {(3 a-4 b) \tan (x) \sec (x)}{8 a^2}+\frac {\left (3 a^2-4 a b+8 b^2\right ) \tanh ^{-1}(\sin (x))}{8 a^3}+\frac {\tan (x) \sec ^3(x)}{4 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[x]^5/(a + b*Cos[x]^2),x]

[Out]

((3*a^2 - 4*a*b + 8*b^2)*ArcTanh[Sin[x]])/(8*a^3) - (b^(5/2)*ArcTanh[(Sqrt[b]*Sin[x])/Sqrt[a + b]])/(a^3*Sqrt[
a + b]) + ((3*a - 4*b)*Sec[x]*Tan[x])/(8*a^2) + (Sec[x]^3*Tan[x])/(4*a)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 425

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1
)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomi
alQ[a, b, c, d, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 3265

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, Dist[-ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos
[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx &=\text {Subst}\left (\int \frac {1}{\left (1-x^2\right )^3 \left (a+b-b x^2\right )} \, dx,x,\sin (x)\right )\\ &=\frac {\sec ^3(x) \tan (x)}{4 a}+\frac {\text {Subst}\left (\int \frac {3 a-b-3 b x^2}{\left (1-x^2\right )^2 \left (a+b-b x^2\right )} \, dx,x,\sin (x)\right )}{4 a}\\ &=\frac {(3 a-4 b) \sec (x) \tan (x)}{8 a^2}+\frac {\sec ^3(x) \tan (x)}{4 a}+\frac {\text {Subst}\left (\int \frac {3 a^2-a b+4 b^2-(3 a-4 b) b x^2}{\left (1-x^2\right ) \left (a+b-b x^2\right )} \, dx,x,\sin (x)\right )}{8 a^2}\\ &=\frac {(3 a-4 b) \sec (x) \tan (x)}{8 a^2}+\frac {\sec ^3(x) \tan (x)}{4 a}-\frac {b^3 \text {Subst}\left (\int \frac {1}{a+b-b x^2} \, dx,x,\sin (x)\right )}{a^3}+\frac {\left (3 a^2-4 a b+8 b^2\right ) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sin (x)\right )}{8 a^3}\\ &=\frac {\left (3 a^2-4 a b+8 b^2\right ) \tanh ^{-1}(\sin (x))}{8 a^3}-\frac {b^{5/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sin (x)}{\sqrt {a+b}}\right )}{a^3 \sqrt {a+b}}+\frac {(3 a-4 b) \sec (x) \tan (x)}{8 a^2}+\frac {\sec ^3(x) \tan (x)}{4 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(215\) vs. \(2(90)=180\).
time = 1.34, size = 215, normalized size = 2.39 \begin {gather*} \frac {-2 \left (3 a^2-4 a b+8 b^2\right ) \log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )+2 \left (3 a^2-4 a b+8 b^2\right ) \log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )+\frac {8 b^{5/2} \log \left (\sqrt {a+b}-\sqrt {b} \sin (x)\right )}{\sqrt {a+b}}-\frac {8 b^{5/2} \log \left (\sqrt {a+b}+\sqrt {b} \sin (x)\right )}{\sqrt {a+b}}+\frac {a^2}{\left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )^4}-\frac {a^2}{\left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )^4}+\frac {a (-3 a+4 b)}{\left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )^2}+\frac {a (-3 a+4 b)}{-1+\sin (x)}}{16 a^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[x]^5/(a + b*Cos[x]^2),x]

[Out]

(-2*(3*a^2 - 4*a*b + 8*b^2)*Log[Cos[x/2] - Sin[x/2]] + 2*(3*a^2 - 4*a*b + 8*b^2)*Log[Cos[x/2] + Sin[x/2]] + (8
*b^(5/2)*Log[Sqrt[a + b] - Sqrt[b]*Sin[x]])/Sqrt[a + b] - (8*b^(5/2)*Log[Sqrt[a + b] + Sqrt[b]*Sin[x]])/Sqrt[a
 + b] + a^2/(Cos[x/2] - Sin[x/2])^4 - a^2/(Cos[x/2] + Sin[x/2])^4 + (a*(-3*a + 4*b))/(Cos[x/2] + Sin[x/2])^2 +
 (a*(-3*a + 4*b))/(-1 + Sin[x]))/(16*a^3)

________________________________________________________________________________________

Maple [A]
time = 0.25, size = 137, normalized size = 1.52

method result size
default \(-\frac {1}{16 a \left (\sin \left (x \right )+1\right )^{2}}-\frac {3 a -4 b}{16 a^{2} \left (\sin \left (x \right )+1\right )}+\frac {\left (3 a^{2}-4 a b +8 b^{2}\right ) \ln \left (\sin \left (x \right )+1\right )}{16 a^{3}}-\frac {b^{3} \arctanh \left (\frac {b \sin \left (x \right )}{\sqrt {\left (a +b \right ) b}}\right )}{a^{3} \sqrt {\left (a +b \right ) b}}+\frac {1}{16 a \left (\sin \left (x \right )-1\right )^{2}}-\frac {3 a -4 b}{16 a^{2} \left (\sin \left (x \right )-1\right )}+\frac {\left (-3 a^{2}+4 a b -8 b^{2}\right ) \ln \left (\sin \left (x \right )-1\right )}{16 a^{3}}\) \(137\)
risch \(-\frac {i \left (3 a \,{\mathrm e}^{7 i x}-4 b \,{\mathrm e}^{7 i x}+11 a \,{\mathrm e}^{5 i x}-4 b \,{\mathrm e}^{5 i x}-11 a \,{\mathrm e}^{3 i x}+4 b \,{\mathrm e}^{3 i x}-3 a \,{\mathrm e}^{i x}+4 b \,{\mathrm e}^{i x}\right )}{4 \left ({\mathrm e}^{2 i x}+1\right )^{4} a^{2}}-\frac {3 \ln \left ({\mathrm e}^{i x}-i\right )}{8 a}+\frac {b \ln \left ({\mathrm e}^{i x}-i\right )}{2 a^{2}}-\frac {\ln \left ({\mathrm e}^{i x}-i\right ) b^{2}}{a^{3}}+\frac {3 \ln \left ({\mathrm e}^{i x}+i\right )}{8 a}-\frac {b \ln \left ({\mathrm e}^{i x}+i\right )}{2 a^{2}}+\frac {\ln \left ({\mathrm e}^{i x}+i\right ) b^{2}}{a^{3}}+\frac {\sqrt {\left (a +b \right ) b}\, b^{2} \ln \left ({\mathrm e}^{2 i x}-\frac {2 i \sqrt {\left (a +b \right ) b}\, {\mathrm e}^{i x}}{b}-1\right )}{2 \left (a +b \right ) a^{3}}-\frac {\sqrt {\left (a +b \right ) b}\, b^{2} \ln \left ({\mathrm e}^{2 i x}+\frac {2 i \sqrt {\left (a +b \right ) b}\, {\mathrm e}^{i x}}{b}-1\right )}{2 \left (a +b \right ) a^{3}}\) \(265\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(x)^5/(a+b*cos(x)^2),x,method=_RETURNVERBOSE)

[Out]

-1/16/a/(sin(x)+1)^2-1/16*(3*a-4*b)/a^2/(sin(x)+1)+1/16*(3*a^2-4*a*b+8*b^2)/a^3*ln(sin(x)+1)-b^3/a^3/((a+b)*b)
^(1/2)*arctanh(b*sin(x)/((a+b)*b)^(1/2))+1/16/a/(sin(x)-1)^2-1/16*(3*a-4*b)/a^2/(sin(x)-1)+1/16/a^3*(-3*a^2+4*
a*b-8*b^2)*ln(sin(x)-1)

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 145, normalized size = 1.61 \begin {gather*} \frac {b^{3} \log \left (\frac {b \sin \left (x\right ) - \sqrt {{\left (a + b\right )} b}}{b \sin \left (x\right ) + \sqrt {{\left (a + b\right )} b}}\right )}{2 \, \sqrt {{\left (a + b\right )} b} a^{3}} - \frac {{\left (3 \, a - 4 \, b\right )} \sin \left (x\right )^{3} - {\left (5 \, a - 4 \, b\right )} \sin \left (x\right )}{8 \, {\left (a^{2} \sin \left (x\right )^{4} - 2 \, a^{2} \sin \left (x\right )^{2} + a^{2}\right )}} + \frac {{\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \log \left (\sin \left (x\right ) + 1\right )}{16 \, a^{3}} - \frac {{\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \log \left (\sin \left (x\right ) - 1\right )}{16 \, a^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(x)^5/(a+b*cos(x)^2),x, algorithm="maxima")

[Out]

1/2*b^3*log((b*sin(x) - sqrt((a + b)*b))/(b*sin(x) + sqrt((a + b)*b)))/(sqrt((a + b)*b)*a^3) - 1/8*((3*a - 4*b
)*sin(x)^3 - (5*a - 4*b)*sin(x))/(a^2*sin(x)^4 - 2*a^2*sin(x)^2 + a^2) + 1/16*(3*a^2 - 4*a*b + 8*b^2)*log(sin(
x) + 1)/a^3 - 1/16*(3*a^2 - 4*a*b + 8*b^2)*log(sin(x) - 1)/a^3

________________________________________________________________________________________

Fricas [A]
time = 0.45, size = 270, normalized size = 3.00 \begin {gather*} \left [\frac {8 \, b^{2} \sqrt {\frac {b}{a + b}} \cos \left (x\right )^{4} \log \left (-\frac {b \cos \left (x\right )^{2} + 2 \, {\left (a + b\right )} \sqrt {\frac {b}{a + b}} \sin \left (x\right ) - a - 2 \, b}{b \cos \left (x\right )^{2} + a}\right ) + {\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \cos \left (x\right )^{4} \log \left (\sin \left (x\right ) + 1\right ) - {\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \cos \left (x\right )^{4} \log \left (-\sin \left (x\right ) + 1\right ) + 2 \, {\left ({\left (3 \, a^{2} - 4 \, a b\right )} \cos \left (x\right )^{2} + 2 \, a^{2}\right )} \sin \left (x\right )}{16 \, a^{3} \cos \left (x\right )^{4}}, \frac {16 \, b^{2} \sqrt {-\frac {b}{a + b}} \arctan \left (\sqrt {-\frac {b}{a + b}} \sin \left (x\right )\right ) \cos \left (x\right )^{4} + {\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \cos \left (x\right )^{4} \log \left (\sin \left (x\right ) + 1\right ) - {\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \cos \left (x\right )^{4} \log \left (-\sin \left (x\right ) + 1\right ) + 2 \, {\left ({\left (3 \, a^{2} - 4 \, a b\right )} \cos \left (x\right )^{2} + 2 \, a^{2}\right )} \sin \left (x\right )}{16 \, a^{3} \cos \left (x\right )^{4}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(x)^5/(a+b*cos(x)^2),x, algorithm="fricas")

[Out]

[1/16*(8*b^2*sqrt(b/(a + b))*cos(x)^4*log(-(b*cos(x)^2 + 2*(a + b)*sqrt(b/(a + b))*sin(x) - a - 2*b)/(b*cos(x)
^2 + a)) + (3*a^2 - 4*a*b + 8*b^2)*cos(x)^4*log(sin(x) + 1) - (3*a^2 - 4*a*b + 8*b^2)*cos(x)^4*log(-sin(x) + 1
) + 2*((3*a^2 - 4*a*b)*cos(x)^2 + 2*a^2)*sin(x))/(a^3*cos(x)^4), 1/16*(16*b^2*sqrt(-b/(a + b))*arctan(sqrt(-b/
(a + b))*sin(x))*cos(x)^4 + (3*a^2 - 4*a*b + 8*b^2)*cos(x)^4*log(sin(x) + 1) - (3*a^2 - 4*a*b + 8*b^2)*cos(x)^
4*log(-sin(x) + 1) + 2*((3*a^2 - 4*a*b)*cos(x)^2 + 2*a^2)*sin(x))/(a^3*cos(x)^4)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{5}{\left (x \right )}}{a + b \cos ^{2}{\left (x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(x)**5/(a+b*cos(x)**2),x)

[Out]

Integral(sec(x)**5/(a + b*cos(x)**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.41, size = 127, normalized size = 1.41 \begin {gather*} \frac {b^{3} \arctan \left (\frac {b \sin \left (x\right )}{\sqrt {-a b - b^{2}}}\right )}{\sqrt {-a b - b^{2}} a^{3}} + \frac {{\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \log \left (\sin \left (x\right ) + 1\right )}{16 \, a^{3}} - \frac {{\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \log \left (-\sin \left (x\right ) + 1\right )}{16 \, a^{3}} - \frac {3 \, a \sin \left (x\right )^{3} - 4 \, b \sin \left (x\right )^{3} - 5 \, a \sin \left (x\right ) + 4 \, b \sin \left (x\right )}{8 \, {\left (\sin \left (x\right )^{2} - 1\right )}^{2} a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(x)^5/(a+b*cos(x)^2),x, algorithm="giac")

[Out]

b^3*arctan(b*sin(x)/sqrt(-a*b - b^2))/(sqrt(-a*b - b^2)*a^3) + 1/16*(3*a^2 - 4*a*b + 8*b^2)*log(sin(x) + 1)/a^
3 - 1/16*(3*a^2 - 4*a*b + 8*b^2)*log(-sin(x) + 1)/a^3 - 1/8*(3*a*sin(x)^3 - 4*b*sin(x)^3 - 5*a*sin(x) + 4*b*si
n(x))/((sin(x)^2 - 1)^2*a^2)

________________________________________________________________________________________

Mupad [B]
time = 2.64, size = 969, normalized size = 10.77 \begin {gather*} \frac {5\,a^3\,\sin \left (x\right )-3\,a^3\,{\sin \left (x\right )}^3+3\,a^3\,\mathrm {atanh}\left (\sin \left (x\right )\right )+8\,b^3\,\mathrm {atanh}\left (\sin \left (x\right )\right )-4\,a\,b^2\,\sin \left (x\right )+a^2\,b\,\sin \left (x\right )-6\,a^3\,\mathrm {atanh}\left (\sin \left (x\right )\right )\,{\sin \left (x\right )}^2+3\,a^3\,\mathrm {atanh}\left (\sin \left (x\right )\right )\,{\sin \left (x\right )}^4-16\,b^3\,\mathrm {atanh}\left (\sin \left (x\right )\right )\,{\sin \left (x\right )}^2+8\,b^3\,\mathrm {atanh}\left (\sin \left (x\right )\right )\,{\sin \left (x\right )}^4+4\,a\,b^2\,{\sin \left (x\right )}^3+a^2\,b\,{\sin \left (x\right )}^3+4\,a\,b^2\,\mathrm {atanh}\left (\sin \left (x\right )\right )-a^2\,b\,\mathrm {atanh}\left (\sin \left (x\right )\right )-8\,a\,b^2\,\mathrm {atanh}\left (\sin \left (x\right )\right )\,{\sin \left (x\right )}^2+2\,a^2\,b\,\mathrm {atanh}\left (\sin \left (x\right )\right )\,{\sin \left (x\right )}^2+4\,a\,b^2\,\mathrm {atanh}\left (\sin \left (x\right )\right )\,{\sin \left (x\right )}^4-a^2\,b\,\mathrm {atanh}\left (\sin \left (x\right )\right )\,{\sin \left (x\right )}^4+\mathrm {atan}\left (\frac {b^7\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,128{}\mathrm {i}-a\,\sin \left (x\right )\,{\left (b^6+a\,b^5\right )}^{3/2}\,64{}\mathrm {i}-b\,\sin \left (x\right )\,{\left (b^6+a\,b^5\right )}^{3/2}\,128{}\mathrm {i}+a\,b^6\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,192{}\mathrm {i}+a^6\,b\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,9{}\mathrm {i}+a^2\,b^5\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,64{}\mathrm {i}+a^3\,b^4\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,40{}\mathrm {i}+a^4\,b^3\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,25{}\mathrm {i}-a^5\,b^2\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,6{}\mathrm {i}}{9\,a^7\,b^3+3\,a^6\,b^4+19\,a^5\,b^5+65\,a^4\,b^6+40\,a^3\,b^7}\right )\,\sqrt {b^6+a\,b^5}\,8{}\mathrm {i}-\mathrm {atan}\left (\frac {b^7\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,128{}\mathrm {i}-a\,\sin \left (x\right )\,{\left (b^6+a\,b^5\right )}^{3/2}\,64{}\mathrm {i}-b\,\sin \left (x\right )\,{\left (b^6+a\,b^5\right )}^{3/2}\,128{}\mathrm {i}+a\,b^6\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,192{}\mathrm {i}+a^6\,b\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,9{}\mathrm {i}+a^2\,b^5\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,64{}\mathrm {i}+a^3\,b^4\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,40{}\mathrm {i}+a^4\,b^3\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,25{}\mathrm {i}-a^5\,b^2\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,6{}\mathrm {i}}{9\,a^7\,b^3+3\,a^6\,b^4+19\,a^5\,b^5+65\,a^4\,b^6+40\,a^3\,b^7}\right )\,{\sin \left (x\right )}^2\,\sqrt {b^6+a\,b^5}\,16{}\mathrm {i}+\mathrm {atan}\left (\frac {b^7\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,128{}\mathrm {i}-a\,\sin \left (x\right )\,{\left (b^6+a\,b^5\right )}^{3/2}\,64{}\mathrm {i}-b\,\sin \left (x\right )\,{\left (b^6+a\,b^5\right )}^{3/2}\,128{}\mathrm {i}+a\,b^6\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,192{}\mathrm {i}+a^6\,b\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,9{}\mathrm {i}+a^2\,b^5\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,64{}\mathrm {i}+a^3\,b^4\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,40{}\mathrm {i}+a^4\,b^3\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,25{}\mathrm {i}-a^5\,b^2\,\sin \left (x\right )\,\sqrt {b^6+a\,b^5}\,6{}\mathrm {i}}{9\,a^7\,b^3+3\,a^6\,b^4+19\,a^5\,b^5+65\,a^4\,b^6+40\,a^3\,b^7}\right )\,{\sin \left (x\right )}^4\,\sqrt {b^6+a\,b^5}\,8{}\mathrm {i}}{8\,a^4\,{\sin \left (x\right )}^4-16\,a^4\,{\sin \left (x\right )}^2+8\,a^4+8\,b\,a^3\,{\sin \left (x\right )}^4-16\,b\,a^3\,{\sin \left (x\right )}^2+8\,b\,a^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(x)^5*(a + b*cos(x)^2)),x)

[Out]

(5*a^3*sin(x) + atan((b^7*sin(x)*(a*b^5 + b^6)^(1/2)*128i - a*sin(x)*(a*b^5 + b^6)^(3/2)*64i - b*sin(x)*(a*b^5
 + b^6)^(3/2)*128i + a*b^6*sin(x)*(a*b^5 + b^6)^(1/2)*192i + a^6*b*sin(x)*(a*b^5 + b^6)^(1/2)*9i + a^2*b^5*sin
(x)*(a*b^5 + b^6)^(1/2)*64i + a^3*b^4*sin(x)*(a*b^5 + b^6)^(1/2)*40i + a^4*b^3*sin(x)*(a*b^5 + b^6)^(1/2)*25i
- a^5*b^2*sin(x)*(a*b^5 + b^6)^(1/2)*6i)/(40*a^3*b^7 + 65*a^4*b^6 + 19*a^5*b^5 + 3*a^6*b^4 + 9*a^7*b^3))*(a*b^
5 + b^6)^(1/2)*8i - 3*a^3*sin(x)^3 + 3*a^3*atanh(sin(x)) + 8*b^3*atanh(sin(x)) - 4*a*b^2*sin(x) + a^2*b*sin(x)
 - atan((b^7*sin(x)*(a*b^5 + b^6)^(1/2)*128i - a*sin(x)*(a*b^5 + b^6)^(3/2)*64i - b*sin(x)*(a*b^5 + b^6)^(3/2)
*128i + a*b^6*sin(x)*(a*b^5 + b^6)^(1/2)*192i + a^6*b*sin(x)*(a*b^5 + b^6)^(1/2)*9i + a^2*b^5*sin(x)*(a*b^5 +
b^6)^(1/2)*64i + a^3*b^4*sin(x)*(a*b^5 + b^6)^(1/2)*40i + a^4*b^3*sin(x)*(a*b^5 + b^6)^(1/2)*25i - a^5*b^2*sin
(x)*(a*b^5 + b^6)^(1/2)*6i)/(40*a^3*b^7 + 65*a^4*b^6 + 19*a^5*b^5 + 3*a^6*b^4 + 9*a^7*b^3))*sin(x)^2*(a*b^5 +
b^6)^(1/2)*16i + atan((b^7*sin(x)*(a*b^5 + b^6)^(1/2)*128i - a*sin(x)*(a*b^5 + b^6)^(3/2)*64i - b*sin(x)*(a*b^
5 + b^6)^(3/2)*128i + a*b^6*sin(x)*(a*b^5 + b^6)^(1/2)*192i + a^6*b*sin(x)*(a*b^5 + b^6)^(1/2)*9i + a^2*b^5*si
n(x)*(a*b^5 + b^6)^(1/2)*64i + a^3*b^4*sin(x)*(a*b^5 + b^6)^(1/2)*40i + a^4*b^3*sin(x)*(a*b^5 + b^6)^(1/2)*25i
 - a^5*b^2*sin(x)*(a*b^5 + b^6)^(1/2)*6i)/(40*a^3*b^7 + 65*a^4*b^6 + 19*a^5*b^5 + 3*a^6*b^4 + 9*a^7*b^3))*sin(
x)^4*(a*b^5 + b^6)^(1/2)*8i - 6*a^3*atanh(sin(x))*sin(x)^2 + 3*a^3*atanh(sin(x))*sin(x)^4 - 16*b^3*atanh(sin(x
))*sin(x)^2 + 8*b^3*atanh(sin(x))*sin(x)^4 + 4*a*b^2*sin(x)^3 + a^2*b*sin(x)^3 + 4*a*b^2*atanh(sin(x)) - a^2*b
*atanh(sin(x)) - 8*a*b^2*atanh(sin(x))*sin(x)^2 + 2*a^2*b*atanh(sin(x))*sin(x)^2 + 4*a*b^2*atanh(sin(x))*sin(x
)^4 - a^2*b*atanh(sin(x))*sin(x)^4)/(8*a^4*sin(x)^4 - 16*a^4*sin(x)^2 + 8*a^3*b + 8*a^4 - 16*a^3*b*sin(x)^2 +
8*a^3*b*sin(x)^4)

________________________________________________________________________________________